Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

*(x, +(y, z)) → +(*(x, y), *(x, z))
*(+(y, z), x) → +(*(x, y), *(x, z))
*(*(x, y), z) → *(x, *(y, z))
+(+(x, y), z) → +(x, +(y, z))

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

*(x, +(y, z)) → +(*(x, y), *(x, z))
*(+(y, z), x) → +(*(x, y), *(x, z))
*(*(x, y), z) → *(x, *(y, z))
+(+(x, y), z) → +(x, +(y, z))

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

*1(x, +(y, z)) → *1(x, y)
*1(+(y, z), x) → *1(x, y)
*1(x, +(y, z)) → *1(x, z)
+1(+(x, y), z) → +1(y, z)
*1(*(x, y), z) → *1(y, z)
+1(+(x, y), z) → +1(x, +(y, z))
*1(+(y, z), x) → +1(*(x, y), *(x, z))
*1(*(x, y), z) → *1(x, *(y, z))
*1(+(y, z), x) → *1(x, z)
*1(x, +(y, z)) → +1(*(x, y), *(x, z))

The TRS R consists of the following rules:

*(x, +(y, z)) → +(*(x, y), *(x, z))
*(+(y, z), x) → +(*(x, y), *(x, z))
*(*(x, y), z) → *(x, *(y, z))
+(+(x, y), z) → +(x, +(y, z))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

*1(x, +(y, z)) → *1(x, y)
*1(+(y, z), x) → *1(x, y)
*1(x, +(y, z)) → *1(x, z)
+1(+(x, y), z) → +1(y, z)
*1(*(x, y), z) → *1(y, z)
+1(+(x, y), z) → +1(x, +(y, z))
*1(+(y, z), x) → +1(*(x, y), *(x, z))
*1(*(x, y), z) → *1(x, *(y, z))
*1(+(y, z), x) → *1(x, z)
*1(x, +(y, z)) → +1(*(x, y), *(x, z))

The TRS R consists of the following rules:

*(x, +(y, z)) → +(*(x, y), *(x, z))
*(+(y, z), x) → +(*(x, y), *(x, z))
*(*(x, y), z) → *(x, *(y, z))
+(+(x, y), z) → +(x, +(y, z))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 2 SCCs with 2 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
QDP
            ↳ UsableRulesProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

+1(+(x, y), z) → +1(y, z)
+1(+(x, y), z) → +1(x, +(y, z))

The TRS R consists of the following rules:

*(x, +(y, z)) → +(*(x, y), *(x, z))
*(+(y, z), x) → +(*(x, y), *(x, z))
*(*(x, y), z) → *(x, *(y, z))
+(+(x, y), z) → +(x, +(y, z))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
            ↳ UsableRulesProof
QDP
                ↳ QDPSizeChangeProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

+1(+(x, y), z) → +1(y, z)
+1(+(x, y), z) → +1(x, +(y, z))

The TRS R consists of the following rules:

+(+(x, y), z) → +(x, +(y, z))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
QDP
            ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

*1(x, +(y, z)) → *1(x, y)
*1(+(y, z), x) → *1(x, y)
*1(x, +(y, z)) → *1(x, z)
*1(*(x, y), z) → *1(y, z)
*1(*(x, y), z) → *1(x, *(y, z))
*1(+(y, z), x) → *1(x, z)

The TRS R consists of the following rules:

*(x, +(y, z)) → +(*(x, y), *(x, z))
*(+(y, z), x) → +(*(x, y), *(x, z))
*(*(x, y), z) → *(x, *(y, z))
+(+(x, y), z) → +(x, +(y, z))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


*1(+(y, z), x) → *1(x, y)
*1(+(y, z), x) → *1(x, z)
The remaining pairs can at least be oriented weakly.

*1(x, +(y, z)) → *1(x, y)
*1(x, +(y, z)) → *1(x, z)
*1(*(x, y), z) → *1(y, z)
*1(*(x, y), z) → *1(x, *(y, z))
Used ordering: Polynomial interpretation [25]:

POL(*(x1, x2)) = x1 + x1·x2 + x2   
POL(*1(x1, x2)) = x1 + x1·x2   
POL(+(x1, x2)) = 1 + x1 + x2   

The following usable rules [17] were oriented:

*(+(y, z), x) → +(*(x, y), *(x, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
+(+(x, y), z) → +(x, +(y, z))
*(*(x, y), z) → *(x, *(y, z))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ QDPSizeChangeProof

Q DP problem:
The TRS P consists of the following rules:

*1(x, +(y, z)) → *1(x, y)
*1(x, +(y, z)) → *1(x, z)
*1(*(x, y), z) → *1(y, z)
*1(*(x, y), z) → *1(x, *(y, z))

The TRS R consists of the following rules:

*(x, +(y, z)) → +(*(x, y), *(x, z))
*(+(y, z), x) → +(*(x, y), *(x, z))
*(*(x, y), z) → *(x, *(y, z))
+(+(x, y), z) → +(x, +(y, z))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs: